Stretchcam: zooming using thin, elastic optics

نویسندگان

  • DANIEL C. SIMS
  • OLIVER COSSAIRT
  • YONGHAO YUE
  • SHREE K. NAYAR
چکیده

Stretchcam is a thin camera with a lens capable of zooming with small actuations. In our design, an elastic lens array is placed on top of a sparse, rigid array of pixels. This lens array is then stretched using a small mechanical motion in order to change the field of view of the system. We present in this paper the characterization of such a system and simulations which demonstrate the capabilities of stretchcam. We follow this with the presentation of images captured from a prototype device of the proposed design. Our prototype system is able to achieve 1.5 times zoom when the scene is only 300 mm away with only a 3% change of the lens array’s original length. References and links 1. S. K. Nayar, D. C. Sims, and M. Fridberg, “Towards self-powered cameras,” in “2015 IEEE International Conference on Computational Photography (ICCP),” (2015), pp. 1–10. 2. K. Z. Ahmed, M. F. Amir, J. H. Ko, and S. Mukhopadhyay, “Reconfigurable 96ÃŮ128 active pixel sensor with 2.1 Âţw/mm2 power generation and regulated multi-domain power delivery for self-powered imaging,” in “ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference,” (2016), pp. 507–510. 3. J. H. Ko, M. F. Amir, K. Z. Ahmed, T. Na, and S. Mukhopadhyay, “A single-chip image sensor node with energy harvesting from a cmos pixel array,” IEEE Transactions on Circuits and Systems I: Regular Papers 64, 2295–2307 (2017). 4. S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith, “Ultra-low-power wireless streaming cameras,” CoRR abs/1707.08718 (2017). 5. V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota, “Lora backscatter: Enabling the vision of ubiquitous connectivity,” CoRR abs/1705.05953 (2017). 6. L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24, 2931–2940 (2016). 7. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007). 8. D. Graham-Rowe, “Liquid lenses make a splash,” Nature Photonics Sample, 2–4 (2006). 9. Y.-H. Lin, M.-S. Chen, and H.-C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19, 4714–4721 (2011). 10. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” Proc. SPIE 8167, 81670W–81670W–9 (2011). 11. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Advanced Functional Materials 21, 4152–4158 (2011). 12. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008). 13. D. J. Reiley, “Folded zoom lenses: a review of patent literature,” Proc. SPIE 9293, 92931O–92931O–7 (2014). 14. A. Yabe, “Novel optical system for very thin zoom lenses,” Proc. SPIE 9580, 95800M–95800M–7 (2015). 15. Light, “Light L16,” (2017). https://light.co/. 16. J.-S. Lu and G.-D. J. Su, “Optical zoom lens module using mems deformable mirrors for portable device,” Proc. SPIE 8488, 84880D–84880D–9 (2012). 17. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). 18. R. Völkel, M. Eisner, and K. Weible, “Miniaturized imaging systems,” Microelectronic Engineering 67 – 68, 461–472 (2003). 19. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. T. Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Applied Optics 48, 2115–2126 (2009). 20. A. Brückner, R. Leitel, A. Oberdörster, P. Dannberg, F. Wippermann, and A. Bräuer, “Multi-aperture optics for wafer-level cameras,” Journal of Micro/Nanolithography, MEMS, and MOEMS 10, 043010–043010–10 (2011). 21. A. Brückner, A. Oberdörster, J. Dunkel, A. Reimann, M. Müller, and F. Wippermann, “Ultra-thin wafer-level camera with 720p resolution using micro-optics,” Proc. SPIE 9193, 91930W–91930W–8 (2014). 22. A. Oberörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and refocusing with thin multi-aperture cameras,” Proc. SPIE 8299, 829907–829907–11 (2012). 23. K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “Picam: An ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32, 166:1–166:13 (2013). 24. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Optical Society of America 40, 1806–1813 (2001). 25. D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in “2016 IEEE International Conference on Computational Photography (ICCP),” (2016), pp. 1–11. 26. Y. Kim, Y.-T. Kim, J.-H. Jung, S.-D. Lee, and B. Lee, “Three-dimensional Integral Imaging Using an Elastic PDMS Lens Array,” IMID/IDMC/ASIA DISPLAY 2008 DIGEST (2008). 27. J. Kim, Y. Jeong, H. Kim, C.-K. Lee, B. Lee, J. Hong, Y. Kim, Y. Hong, S.-D. Lee, and B. Lee, “F-number matching method in light field microscopy using an elastic micro lens array,” Opt. Lett. 41, 2751–2754 (2016). 28. Z. Li and J. Xiao, “Strain tunable optics of elastomeric microlens array,” Extreme Mechanics Letters 4, 118 – 123 (2015). 29. D. Chandra, S. Yang, and P.-C. Lin, “Strain responsive concave and convex microlens arrays,” Applied Physics Letters 91, 251912 (2007). 30. Dassault Systemes, “Abaqus Unified FEA,” (2017). https://www.3ds.com/products-services/simulia/. 31. J. Donohue, “Introductory review of target discrimination criteria,” Tech. rep., Technical Report PT-TR-92-2129, US Airforce Systems Command, Phillips Laboratory (1991). 32. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. vol. 27, pp. 818–820 (2002).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thin Lens Based Camera Model for Depth Estimation from Defocus and Translation by Zooming

Depth recovery is a central concern in computer vision, and many methods were proposed for the monocular depth estimation by zooming as well as focusing and irising. In the past, there are two distinct approaches in depth by zooming; one is from motion parallax along the optical axis using a pinhole camera model, and the other from defocus using a thin lens camera model. This paper presents a n...

متن کامل

Image Zooming using Non-linear Partial Differential Equation

The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...

متن کامل

Influence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings

In this paper, the influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based functionally graded materials (FGM) cylindrical shells under combined loadings is investigated. The equations of motion are obtained by using the principle of Hamilton and Maxwell's equations and the Navier's type solution used to solve these equations. Material propertie...

متن کامل

Tuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm

Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...

متن کامل

Elastic/plastic Buckling Analysis of Skew Thin Plates based on Incremental and Deformation Theories of Plasticity using Generalized Differential Quadrature Method

Abstract   In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is presented. The governing equations are derived for the first time based on the incremental and deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is described by the Ramberg-Osgood model. The ranges of plate geometries...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017